Лекция 13. Edge‑вычисления: локальная аналитика, фильтрация, офлайн‑режим
Цель лекции: показать, как проектировать edge‑контур smart‑системы: какие задачи переносить на край сети, как выполнять локальную аналитику и фильтрацию телеметрии, как обеспечивать автономную работу при потере связи (offline‑режим), и как синхронизироваться с облаком без потерь и дубликатов.
1. Зачем нужен edge
Edge‑вычисления — обработка данных “рядом с источником” (датчиком/оборудованием), на шлюзе, промышленном ПК, контроллере или микросервере.

Основные причины:
• низкая задержка (реакция на события за миллисекунды)
• экономия канала (не отправлять “всё” в облако)
• устойчивость к плохой сети (частые обрывы)
• приватность/регуляторика (часть данных не покидает периметр)
• локальная безопасность (контроль доступа к оборудованию)

Идея: облако хорошо для централизованной аналитики и хранения, edge — для быстрых решений и “выживания” без сети.
2. Где стоит edge в архитектуре IoT‑платформы
Типовой поток:
Sensors/PLCs → Edge gateway (ingest + preprocess + local rules) → MQTT/streaming → Cloud (storage + analytics + dashboards)

Edge‑шлюз часто выполняет:
• сбор и нормализацию данных (protocol adapters)
• локальный буфер (store‑and‑forward)
• фильтрацию/агрегацию
• локальные правила (rule engine)
• “быстрые” модели ML (анализ аномалий)
• отправку только событий/сводок в облако.
3. Локальная аналитика: какие задачи переносить на край
3.1 Подход “что на edge, что в cloud”:
• edge: latency‑critical, простые вычисления, непрерывный поток
• cloud: тяжелая аналитика, обучение моделей, исторические запросы

3.2 Примеры локальной аналитики:
• пороговые правила и контроль уставок
• детекция аномалий по статистике (z‑score, EWMA, CUSUM)
• расчет агрегатов: mean/p95, количество событий, rate
• компрессия и извлечение признаков (FFT‑признаки вибрации)
• простые модели: логистическая регрессия, деревья, малые нейросети
• первичная диагностика оборудования и локальные алерты

Критерий: если для решения нужно “реагировать быстро” или “жить без облака”, это кандидат на edge.
4. Фильтрация и сокращение данных
Цель фильтрации — повысить качество сигнала и уменьшить объем данных.

4.1 Типы фильтрации:
• шумоподавление: медианный фильтр, скользящее среднее, Butterworth
• выбросы: Hampel filter, robust z‑score
• дедупликация: не отправлять повторяющиеся значения
• событийная фильтрация: отправлять только при изменении (delta/threshold)
• downsampling: реже передавать, но сохранять статистики

4.2 Агрегация:
• за окно (например 1 мин): mean, std, min/max, p95
• счетчики: число рестартов, число ошибок диска
• гистограммы/скетчи (если надо распределение)

Главный принцип: “сырой поток” — локально, в облако — события и агрегаты.
5. Edge‑ML: инференс на краю
Частая схема: модель обучается в cloud, инференс выполняется на edge.

Практики:
• хранить версию модели + калибровку (нормализация, порог)
• следить за дрейфом (domain shift): PSI/KS, мониторинг метрик
• иметь fallback‑режим (правила) при деградации модели

Если меток мало, полезны:
• калибровка порогов по “canary” небольшим меткам
• лёгкая адаптация нормализации (смещение/масштаб)

Важно: edge‑ML — это не только модель, но и инженерный конвейер данных.
6. Офлайн‑режим: автономная работа при потере связи
Офлайн‑режим — способность edge‑узла продолжать работу без облака.

6.1 Требования:
• локальная буферизация телеметрии (store‑and‑forward)
• локальные правила управления (не зависеть от облака)
• локальные алерты (сирена/смс через резервный канал)
• ограничение диска/очереди (чтобы не переполнить storage)

6.2 Буферизация:
• write‑ahead log (журнал) или локальная time‑series БД
• TTL/retention (сколько хранить)
• приоритеты: события > сырая телеметрия

6.3 Что делать при переполнении:
• уменьшить частоту (adaptive sampling)
• сохранять только агрегаты
• отбрасывать низкоприоритетные сигналы

Цель: не “умереть”, а перейти в деградированный, но управляемый режим.
7. Синхронизация после офлайна: без потерь и дубликатов
После восстановления связи нужно безопасно “доставить хвост” данных.

Проблемы:
• дубликаты (повторная отправка)
• порядок сообщений
• большой backlog (накопленный объем)

Решения:
• уникальные ID событий (device_id + timestamp + seq)
• idempotent ingest на сервере (дедупликация по ID)
• контроль скорости выгрузки (throttling)
• компрессия/батчинг

Для сообщений: at‑least‑once + дедупликация обычно практичнее, чем “exactly‑once”.
8. Edge‑безопасность (кратко, по делу)
Edge — физически доступная точка, поэтому:
• secure boot, подписанные обновления
• минимальные права (least privilege)
• локальные ключи/сертификаты + ротация
• сегментация сети (edge VLAN, отдельные ACL)
• мониторинг вмешательств (tamper detection, логирование)

Если edge скомпрометирован, злоумышленник может влиять на данные и управление — поэтому защита и обновления критичны.
9. Практический кейс (пример)
Кейс: мониторинг производственной линии.

На edge:
• сбор вибрации и температуры
• фильтрация и извлечение признаков (RMS, спектральные пики)
• локальная детекция аномалий (EWMA + пороги)
• буферизация при потере сети

В облаке:
• хранение истории
• обучение модели прогноза отказов
• отчеты и оптимизация обслуживания

Результат: в облако уходит “смысл” (события и агрегаты), а edge обеспечивает стабильность и реакцию.
10. Типовые ошибки проектирования edge
• отправлять “всё сырое” в облако без фильтрации → дорого и нестабильно
• отсутствие офлайн‑режима → система ломается при первом обрыве связи
• нет лимитов буфера → переполнение диска и крах шлюза
• нет дедупликации → “дубли” после восстановления связи
• модель без контроля дрейфа → тихая деградация качества
• обновления без подписи → риск компрометации
11. Итоги
• Edge нужен для низкой задержки, экономии канала и автономности.
• Локальная аналитика и фильтрация превращают сырой поток в события и агрегаты.
• Офлайн‑режим: буфер + локальные правила + деградация по приоритетам.
• После офлайна важны: дедупликация, контроль скорости выгрузки, порядок.
• Edge‑безопасность и обновления — обязательны.
Самопроверка (10 вопросов)
• Какие задачи выгоднее выполнять на edge, а какие — в cloud?
• Какие виды фильтрации телеметрии чаще всего применяются на шлюзе?
• Что такое store‑and‑forward и зачем нужен лимит буфера?
• Какие варианты деградации применимы при переполнении диска на edge?
• Почему после офлайна часто возникают дубликаты и как их убрать?
• Что такое idempotent ingest и зачем он нужен?
• Почему at‑least‑once + дедупликация часто практичнее, чем exactly‑once?
• Какие элементы нужно хранить вместе с ML‑моделью на edge (кроме весов)?
• Как обнаруживать domain shift на edge без меток?
• Назовите 3 ключевые меры безопасности для edge‑узла.
